Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450
Filtrar
1.
J Biol Chem ; 300(1): 105567, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103641

RESUMO

The role of RNA G-quadruplexes (rG4s) in bacteria remains poorly understood. High G-quadruplex densities have been linked to organismal stress. Here we investigate rG4s in mycobacteria, which survive highly stressful conditions within the host. We show that rG4-enrichment is a unique feature exclusive to slow-growing pathogenic mycobacteria, and Mycobacterium tuberculosis (Mtb) transcripts contain an abundance of folded rG4s. Notably, the PE/PPE family of genes, unique to slow-growing pathogenic mycobacteria, contain over 50% of rG4s within Mtb transcripts. We found that RNA oligonucleotides of putative rG4s in PE/PPE genes form G-quadruplex structures in vitro, which are stabilized by the G-quadruplex ligand BRACO19. Furthermore, BRACO19 inhibits the transcription of PE/PPE genes and selectively suppresses the growth of Mtb but not Mycobacterium smegmatis or other rapidly growing bacteria. Importantly, the stabilization of rG4s inhibits the translation of Mtb PE/PPE genes (PPE56, PPE67, PPE68, PE_PGRS39, and PE_PGRS41) ectopically expressed in M. smegmatis or Escherichia coli. In addition, the rG4-mediated reduction in PE/PPE protein levels attenuates proinflammatory response upon infection of THP-1 cells. Our findings shed new light on the regulation of PE/PPE genes and highlight a pivotal role for rG4s in Mtb transcripts as regulators of post-transcriptional translational control. The rG4s in mycobacterial transcripts may represent potential drug targets for newer therapies.


Assuntos
Proteínas de Bactérias , Quadruplex G , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis , Biossíntese de Proteínas , RNA Bacteriano , RNA Mensageiro , Humanos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos/genética , Inflamação/microbiologia , Ligantes , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Estabilidade de RNA , RNA Bacteriano/genética , RNA Mensageiro/genética , Células THP-1 , Transcrição Gênica/efeitos dos fármacos
2.
Front Cell Infect Microbiol ; 13: 1205829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692163

RESUMO

Introduction: Mycobacteria assemble a complex cell wall with cross-linked peptidoglycan (PG) which plays an essential role in maintenance of cell wall integrity and tolerance to osmotic pressure. We previously demonstrated that various hydrolytic enzymes are required to remodel PG during essential processes such as cell elongation and septal hydrolysis. Here, we explore the chemistry associated with PG cross-linking, specifically the requirement for amidation of the D-glutamate residue found in PG precursors. Methods: Synthetic fluorescent probes were used to assess PG remodelling dynamics in live bacteria. Fluorescence microscopy was used to assess protein localization in live bacteria and CRISPR-interference was used to construct targeted gene knockdown strains. Time-lapse microscopy was used to assess bacterial growth. Western blotting was used to assess protein phosphorylation. Results and discussion: In Mycobacterium smegmatis, we confirmed the essentiality for D-glutamate amidation in PG biosynthesis by labelling cells with synthetic fluorescent PG probes carrying amidation modifications. We also used CRISPRi targeted knockdown of genes encoding the MurT-GatD complex, previously implicated in D-glutamate amidation, and demonstrated that these genes are essential for mycobacterial growth. We show that MurT-rseGFP co-localizes with mRFP-GatD at the cell poles and septum, which are the sites of cell wall synthesis in mycobacteria. Furthermore, time-lapse microscopic analysis of MurT-rseGFP localization, in fluorescent D-amino acid (FDAA)-labelled mycobacterial cells during growth, demonstrated co-localization with maturing PG, suggestive of a role for PG amidation during PG remodelling and repair. Depletion of MurT and GatD caused reduced PG cross-linking and increased sensitivity to lysozyme and ß-lactam antibiotics. Cell growth inhibition was found to be the result of a shutdown of PG biosynthesis mediated by the serine/threonine protein kinase B (PknB) which senses uncross-linked PG. Collectively, these data demonstrate the essentiality of D-glutamate amidation in mycobacterial PG precursors and highlight the MurT-GatD complex as a novel drug target.


Assuntos
Amidas , Parede Celular , Ácido Glutâmico , Mycobacterium smegmatis , Peptidoglicano , Amidas/metabolismo , Ácido Glutâmico/metabolismo , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Proteínas de Bactérias/metabolismo , Peptidoglicano/metabolismo
3.
Microbiol Spectr ; 10(1): e0126221, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35171048

RESUMO

The emergence of antimicrobial resistance warrants for the development of improved treatment approaches. In this regard, peptide nucleic acids (PNAs) have shown great promise, exhibiting antibiotic properties through the targeting of cellular nucleic acids. We aimed to study the efficacy of PNA as an anti-tuberculosis agent. Since the efficacy of PNA is limited by its low penetration into the cell, we also investigated combinatorial treatments using permeabilizing drugs to improve PNA efficacy. Various concentrations of anti-inhA PNA, permeabilizing drugs, and their combinations were screened against extracellular and intracellular mycobacteria.0.625 to 5 µM anti-inhA PNA was observed to merely inhibit the growth of extracellular M. smegmatis, while low intracellular bacterial load was reduced by 2 or 2.5 log-fold when treated with 2.5 or 5 µM PNA, respectively. Anti-inhA PNA against M. tuberculosis H37Ra exhibited bactericidal properties at 2.5 and 5 µM and enabled a slight reduction in intracellular M. tuberculosis at concentrations from 2.5 to 20 µM. Of the permeabilizing drugs tested, ethambutol showed the most permeabilizing potential and ultimately potentiated anti-inhA PNA to the greatest extent, reducing its efficacious concentration to 1.25 µM against both M. smegmatis and M. tuberculosis. Furthermore, an enhanced clearance of 1.3 log-fold was observed for ethambutol-anti-inhA PNA combinations against intracellular M. tuberculosis. Thus, permeabilizing drug-PNA combinations indeed exhibit improved efficacies. We therefore propose that anti-inhA PNA could improve therapy even when applied in minute doses as an addition to the current anti-tuberculosis drug regimen. IMPORTANCE Peptide nucleic acids have great potential in therapeutics as anti-gene/anti-sense agents. However, their limited uptake in cells has curtailed their widespread application. Through this study, we explore a PNA-drug combinatorial strategy to improve the efficacy of PNAs and reduce their effective concentrations. This work also focuses on improving tuberculosis treatment, which is hindered by the emergence of antimicrobial-resistant strains of Mycobacterium tuberculosis. It is observed that the antibacterial efficacy of anti-inhA PNA is enhanced when it is combined with permeabilizing drugs, particularly ethambutol. This indicates that the addition of even small concentrations of anti-inhA PNA to the current TB regimen could potentiate their therapeutic efficiency. We hypothesize that this system would also overcome isoniazid resistance, since the resistance mutations lie outside the designed anti-inhA PNA target site.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Ceftazidima/farmacologia , Colistina/farmacologia , Etambutol/farmacologia , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/genética , Ácidos Nucleicos Peptídicos/farmacologia , Proteínas de Bactérias/metabolismo , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Oxirredutases/metabolismo , Ácidos Nucleicos Peptídicos/genética , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
4.
Microbiol Spectr ; 9(3): e0000921, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937164

RESUMO

The epidemiological importance of mycobacterial species is indisputable, and the necessity to find new molecules that can inhibit their growth is urgent. The shikimate pathway, required for the synthesis of important bacterial metabolites, represents a set of targets for inhibitors of Mycobacterium tuberculosis growth. The aroA-encoded 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme catalyzes the sixth step of the shikimate pathway. In this study, we combined gene disruption, gene knockdown, point mutations (D61W, R134A, E321N), and kinetic analysis to evaluate aroA gene essentiality and vulnerability of its protein product, EPSPS, from Mycolicibacterium (Mycobacterium) smegmatis (MsEPSPS). We demonstrate that aroA-deficient cells are auxotrophic for aromatic amino acids (AroAAs) and that the growth impairment observed for aroA-knockdown cells grown on defined medium can be rescued by AroAA supplementation. We also evaluated the essentiality of selected MsEPSPS residues in bacterial cells grown without AroAA supplementation. We found that the catalytic residues R134 and E321 are essential, while D61, presumably important for protein dynamics and suggested to have an indirect role in catalysis, is not essential under the growth conditions evaluated. We have also determined the catalytic efficiencies (Kcat/Km) of recombinant wild-type (WT) and mutated versions of MsEPSPS (D61W, R134A, E321N). Our results suggest that drug development efforts toward EPSPS inhibition may be ineffective if bacilli have access to external sources of AroAAs in the context of infection, which should be evaluated further. In the absence of AroAA supplementation, aroA from M. smegmatis is essential, its essentiality is dependent on MsEPSPS activity, and MsEPSPS is vulnerable. IMPORTANCE We found that cells from Mycobacterium smegmatis, a model organism safer and easier to study than the disease-causing mycobacterial species, when depleted of an enzyme from the shikimate pathway, are auxotrophic for the three aromatic amino acids (AroAAs) that serve as building blocks of cellular proteins: l-tryptophan, l-phenylalanine, and l-tyrosine. That supplementation with only AroAAs is sufficient to rescue viable cells with the shikimate pathway inactivated was unexpected, since this pathway produces an end product, chorismate, that is the starting compound of essential pathways other than the ones that produce AroAAs. The depleted enzyme, the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), catalyzes the sixth step of shikimate pathway. Depletion of this enzyme inside cells was performed by disrupting or silencing the EPSPS-encoding aroA gene. Finally, we evaluated the essentiality of specific residues from EPSPS that are important for its catalytic activity, determined with experiments of enzyme kinetics using recombinant EPSPS mutants.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Aminoácidos Aromáticos/metabolismo , Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/enzimologia , 3-Fosfoshikimato 1-Carboxiviniltransferase/química , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Cinética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Alinhamento de Sequência
5.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768965

RESUMO

Regulatory small non-coding RNAs play a significant role in bacterial adaptation to changing environmental conditions. Various stresses such as hypoxia and nutrient starvation cause a reduction in the metabolic activity of Mycobacterium smegmatis, leading to entry into dormancy. We investigated the functional role of F6, a small RNA of M. smegmatis, and constructed an F6 deletion strain of M. smegmatis. Using the RNA-seq approach, we demonstrated that gene expression changes that accompany F6 deletion contributed to bacterial resistance against oxidative stress. We also found that F6 directly interacted with 5'-UTR of MSMEG_4640 mRNA encoding RpfE2, a resuscitation-promoting factor, which led to the downregulation of RpfE2 expression. The F6 deletion strain was characterized by the reduced ability to enter into dormancy (non-culturability) in the potassium deficiency model compared to the wild-type strain, indicating that F6 significantly contributes to bacterial adaptation to non-optimal growth conditions.


Assuntos
Mycobacterium smegmatis/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Regiões 5' não Traduzidas , Adaptação Fisiológica/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Família Multigênica , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/fisiologia , RNA-Seq , Deleção de Sequência , Estresse Fisiológico/genética
6.
Biomed Pharmacother ; 144: 112264, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34624680

RESUMO

In Sudanese traditional medicine, decoctions, macerations, and tonics of the stem and root of Combretum hartmannianum are used for the treatment of persistent cough, a symptom that could be related to tuberculosis (TB). To verify these traditional uses, extracts from the stem wood, stem bark, and roots of C. hartmannianum were screened for their growth inhibitory effects against Mycobacterium smegmatis ATCC 14468. Methanol Soxhlet and ethyl acetate extracts of the root gave the strongest effects (MIC 312.5 and 625 µg/ml, respectively). HPLC-UV/DAD and UHPLC/QTOF-MS analysis of the ethyl acetate extract of the root led to the detection of 54 compounds, of which most were polyphenols and many characterized for the first time in C. hartmannianum. Among the major compounds were terflavin B and its two isomers, castalagin, corilagin, tellimagrandin I and its derivative, (S)-flavogallonic acid dilactone, punicalagin, and methyl-ellagic acid xylopyranoside. In addition, di-, tri- and tetra-galloyl glucose, combregenin, terminolic acid, cordifoliside D, luteolin, and quercetin-3-O-galactoside-7-O-rhamnoside-(2→1)-O-ß-D-arabinopyranoside were characterized. Luteolin gave better growth inhibition against M. smegmatis (MIC 250 µg/ml) than corilagin, ellagic acid, and gallic acid (MIC 500-1000 µg/ml). Our study justifies the use of C. hartmannianum in Sudanese folk medicine against prolonged cough that could be related to TB infection. This study demonstrates that C. hartmannianum should be explored further for new anti-TB drug scaffolds and antibiotic adjuvants.


Assuntos
Antibacterianos/farmacologia , Combretum , Flavonoides/farmacologia , Glicosídeos/farmacologia , Taninos Hidrolisáveis/farmacologia , Mycobacterium smegmatis/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Antibacterianos/isolamento & purificação , Combretum/química , Etnofarmacologia , Flavonoides/isolamento & purificação , Glicosídeos/isolamento & purificação , Humanos , Taninos Hidrolisáveis/isolamento & purificação , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/crescimento & desenvolvimento , Triterpenos Pentacíclicos/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Sudão
7.
Methods Mol Biol ; 2314: 151-166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235651

RESUMO

Zinc starvation in Mycobacterium smegmatis and Mycobacterium tuberculosis induces ribosome remodeling and hibernation. Remodeling involves replacement of C+ ribosomal (r-) proteins containing the zinc-binding CXXC motif with their C- paralogues without the motif. Hibernation is characterized by binding of mycobacterial-specific protein Y (Mpy) to 70S C- ribosomes, stabilizing the ribosome in an inactive state that is also resistant to kanamycin and streptomycin. We observed that ribosome remodeling and hibernation occur at two different concentrations of cellular zinc. Here, we describe the methods to purify hibernating and active forms of C- ribosomes from zinc-starved mycobacteria, along with purification of C+ ribosomes from zinc-rich mycobacterial cells. In vitro analysis of these distinct types of ribosomes will facilitate screening of small molecule inhibitors of ribosome hibernation for improved therapeutics against mycobacterial infections.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium tuberculosis/crescimento & desenvolvimento , Polirribossomos/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Zinco/deficiência , Farmacorresistência Bacteriana , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , RNA Ribossômico/metabolismo
8.
Microbiology (Reading) ; 167(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34236958

RESUMO

In Mycobacterium smegmatis (renamed Mycolicibacterium smegmatis), glucose 6-phosphate (G6P) level is exceptionally high as compared to other bacteria, E. coli for example. Earlier investigations have indicated that G6P protects M. smegmatis (Msm) against oxidative stress-inducing agents. G6P is a glycolytic intermediate formed either directly through the phosphorylation of glucose or indirectly via the gluconeogenic pathway. Its consumption is catalysed by several enzymes, one of which being the NADPH dependent G6P dehydrogenase (G6PDH) encoded by zwf (msmeg_0314). While investigating the extent to which the carbon sources glucose and glycerol influence Msm growth, we observed that intracellular concentration of G6P was lower in the former's presence than the latter. We could correlate this difference with that in the growth rate, which was higher in glycerol than glucose. We also found that lowering of G6P content in glucose-grown cells was triggered by the induced expression of zwf and the resultant increase in G6PDH activity. When we silenced zwf using CRISPR-Cas9 technology, we observed a significant rise in the growth rate of Msm. Therefore, we have found that depletion of G6P in glucose-grown cells due to increased G6PDH activity is at least one reason why the growth rate of Msm in glucose is less than glycerol. However, we could not establish a similar link-up between slow growth in glucose and lowering of G6P level in the case of Mycobacterium tuberculosis (Mtb). Mycobacteria, therefore, may have evolved diverse mechanisms to ensure that they use glycerol preferentially over glucose for their growth.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Enzimológica da Expressão Gênica , Glucose-6-Fosfato/metabolismo , Glucose/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Glucosefosfato Desidrogenase/genética , Humanos , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo
9.
Front Immunol ; 12: 666293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017340

RESUMO

Although Mycobacterium tuberculosis (Mtb) is an intracellular pathogen in phagocytic cells, the factors and mechanisms by which they invade and persist in host cells are still not well understood. Characterization of the bacterial proteins modulating macrophage function is essential for understanding tuberculosis pathogenesis and bacterial virulence. Here we investigated the pathogenic role of the Rv2145c protein in stimulating IL-10 production. We first found that recombinant Rv2145c stimulated bone marrow-derived macrophages (BMDMs) to secrete IL-10, IL-6 and TNF-α but not IL-12p70 and to increase the expression of surface molecules through the MAPK, NF-κB, and TLR4 pathways and enhanced STAT3 activation and the expression of IL-10 receptor in Mtb-infected BMDMs. Rv2145c significantly enhanced intracellular Mtb growth in BMDMs compared with that in untreated cells, which was abrogated by STAT3 inhibition and IL-10 receptor (IL-10R) blockade. Expression of Rv2145c in Mycobacterium smegmatis (M. smegmatis) led to STAT3-dependent IL-10 production and enhancement of intracellular growth in BMDMs. Furthermore, the clearance of Rv2145c-expressing M. smegmatis in the lungs and spleens of mice was delayed, and these effects were abrogated by administration of anti-IL-10R antibodies. Finally, all mice infected with Rv2145c-expressing M. smegmatis died, but those infected with the vector control strain did not. Our data suggest that Rv2145c plays a role in creating a favorable environment for bacterial survival by modulating host signals.


Assuntos
Proteínas de Bactérias/imunologia , Mycobacterium tuberculosis/patogenicidade , Receptores de Interleucina-10/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Proteínas de Bactérias/genética , Interleucina-10/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/imunologia , Mycobacterium smegmatis/patogenicidade , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/imunologia , Receptores de Interleucina-10/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Virulência
10.
Molecules ; 26(7)2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800635

RESUMO

The urge for the development of a more efficient antibiotic crystalline forms led us to the disclosure of new antibiotic coordination frameworks of pyrazinamide, a well-known drug used for the treatment of tuberculosis, with some of the novel compounds unravelling improved antimycobacterial activity. Mechanochemistry was the preferred synthetic technique to yield novel compounds, allowing the reproduction of a 1D zinc framework, the synthesis of a novel hydrogen bonding manganese framework, and three new compounds with silver. The structural characterization of the novel forms is presented along with stability studies. The increased antimicrobial activity of the new silver-based frameworks against Escherichia coli, Staphylococcus aureus, and Mycobacterium smegmatis is particularly relevant.


Assuntos
Antibacterianos/síntese química , Complexos de Coordenação/síntese química , Manganês/química , Compostos Organometálicos/síntese química , Pirazinamida/química , Prata/química , Zinco/química , Antibacterianos/farmacologia , Complexos de Coordenação/farmacologia , Estabilidade de Medicamentos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Ligação de Hidrogênio , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/crescimento & desenvolvimento , Compostos Organometálicos/farmacologia , Pirazinamida/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Relação Estrutura-Atividade
11.
FASEB J ; 35(4): e21475, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33772870

RESUMO

Cell signaling relies on second messengers to transduce signals from the sensory apparatus to downstream signaling pathway components. In bacteria, one of the most important and ubiquitous second messenger is the small molecule cyclic diguanosine monophosphate (c-di-GMP). While the biosynthesis, degradation, and regulatory pathways controlled by c-di-GMP are well characterized, the mechanisms through which c-di-GMP controls these processes are not entirely understood. Herein we present the report of a c-di-GMP sensing sensor histidine kinase PdtaS (Rv3220c), which binds to c-di-GMP at submicromolar concentrations, subsequently perturbing signaling of the PdtaS-PdtaR (Rv1626) two-component system. Aided by biochemical analysis, genetics, molecular docking, FRET microscopy, and structural modelling, we have characterized the binding of c-di-GMP in the GAF domain of PdtaS. We show that a pdtaS knockout in Mycobacterium smegmatis is severely compromised in growth on amino acid deficient media and exhibits global transcriptional dysregulation. The perturbation of the c-di-GMP-PdtaS-PdtaR axis results in a cascade of cellular changes recorded by a multiparametric systems' approach of transcriptomics, unbiased metabolomics, and lipid analyses.


Assuntos
Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Histidina Quinase/metabolismo , Bactérias , Proteínas de Bactérias/metabolismo , Simulação de Acoplamento Molecular/métodos , Mycobacterium/metabolismo , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/fisiologia
12.
Sci Rep ; 11(1): 6493, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753820

RESUMO

Rapid detection of tuberculosis (TB) infection is paramount to curb further transmission. The gold standard for this remains mycobacterial culture, however emerging evidence confirms the presence of differentially culturable tubercle bacteria (DCTB) in clinical specimens. These bacteria do not grow under standard culture conditions and require the presence of culture filtrate (CF), from axenic cultures of Mycobacterium tuberculosis (Mtb), to emerge. It has been hypothesized that molecules such as resuscitation promoting factors (Rpfs), fatty acids and cyclic-AMP (cAMP) present in CF are responsible for the growth stimulatory activity. Herein, we tested the ability of CF from the non-pathogenic bacterium Mycobacterium smegmatis (Msm) to stimulate the growth of DCTB, as this organism provides a more tractable source of CF. We also interrogated the role of Mtb Rpfs in stimulation of DCTB by creating recombinant strains of Msm that express Mtb rpf genes in various combinations. CF derived from this panel of strains was tested on sputum from individuals with drug susceptible TB prior to treatment. CF from wild type Msm did not enable detection of DCTB in a manner akin to Mtb CF preparations and whilst the addition of RpfABMtb and RpfABCDEMtb to an Msm mutant devoid of its native rpfs did improve detection of DCTB compared to the no CF control, it was not statistically different to the empty vector control. To further investigate the role of Rpfs, we compared the growth stimulatory activity of CF from Mtb, with and without Rpfs and found these to be equivalent. Next, we tested chemically diverse fatty acids and cAMP for growth stimulation and whilst some selective stimulatory effect was observed, this was not significantly higher than the media control and not comparable to CF. Together, these data indicate that the growth stimulatory effect observed with Mtb CF is most likely the result of a combination of factors. Future work aimed at identifying the nature of these growth stimulatory molecules may facilitate improvement of culture-based diagnostics for TB.


Assuntos
Técnicas Bacteriológicas/métodos , Mycobacterium tuberculosis/isolamento & purificação , Escarro/microbiologia , Tuberculose Pulmonar/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citocinas/genética , Citocinas/metabolismo , Humanos , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Tuberculose Pulmonar/diagnóstico
13.
mBio ; 12(2)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653882

RESUMO

Functional characterization of bacterial proteins lags far behind the identification of new protein families. This is especially true for bacterial species that are more difficult to grow and genetically manipulate than model systems such as Escherichia coli and Bacillus subtilis To facilitate functional characterization of mycobacterial proteins, we have established a Mycobacterial Systems Resource (MSR) using the model organism Mycobacterium smegmatis This resource focuses specifically on 1,153 highly conserved core genes that are common to many mycobacterial species, including Mycobacterium tuberculosis, in order to provide the most relevant information and resources for the mycobacterial research community. The MSR includes both biological and bioinformatic resources. The biological resource includes (i) an expression plasmid library of 1,116 genes fused to a fluorescent protein for determining protein localization; (ii) a library of 569 precise deletions of nonessential genes; and (iii) a set of 843 CRISPR-interference (CRISPRi) plasmids specifically targeted to silence expression of essential core genes and genes for which a precise deletion was not obtained. The bioinformatic resource includes information about individual genes and a detailed assessment of protein localization. We anticipate that integration of these initial functional analyses and the availability of the biological resource will facilitate studies of these core proteins in many Mycobacterium species, including the less experimentally tractable pathogens M. abscessus, M. avium, M. kansasii, M. leprae, M. marinum, M. tuberculosis, and M. ulceransIMPORTANCE Diseases caused by mycobacterial species result in millions of deaths per year globally, and present a substantial health and economic burden, especially in immunocompromised patients. Difficulties inherent in working with mycobacterial pathogens have hampered the development and application of high-throughput genetics that can inform genome annotations and subsequent functional assays. To facilitate mycobacterial research, we have created a biological and bioinformatic resource (https://msrdb.org/) using Mycobacterium smegmatis as a model organism. The resource focuses specifically on 1,153 proteins that are highly conserved across the mycobacterial genus and, therefore, likely perform conserved mycobacterial core functions. Thus, functional insights from the MSR will apply to all mycobacterial species. We believe that the availability of this mycobacterial systems resource will accelerate research throughout the mycobacterial research community.


Assuntos
Genes Bacterianos , Mycobacterium smegmatis/genética , Mycobacterium/genética , Pesquisa , Biologia Computacional , Biblioteca Gênica , Mycobacterium/classificação , Mycobacterium/patogenicidade , Mycobacterium smegmatis/crescimento & desenvolvimento
14.
Biochim Biophys Acta Gen Subj ; 1865(2): 129783, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33166604

RESUMO

BACKGROUND: The bacterial GlgE pathway is the third known route to glycogen and is the only one present in mycobacteria. It contributes to the virulence of Mycobacterium tuberculosis. The involvement of GlgE in glycogen biosynthesis was discovered twenty years ago when the phenotype of a temperature-sensitive Mycobacterium smegmatis mutation was rescued by the glgE gene. The evidence at the time suggested glgE coded for a glucanase responsible for the hydrolysis of glycogen, in stark contrast with recent evidence showing GlgE to be a polymerase responsible for its biosynthesis. METHODS: We reconstructed and examined the temperature-sensitive mutant and characterised the mutated GlgE enzyme. RESULTS: The mutant strain accumulated the substrate for GlgE, α-maltose-1-phosphate, at the non-permissive temperature. The glycogen assay used in the original study was shown to give a false positive result with α-maltose-1-phosphate. The accumulation of α-maltose-1-phosphate was due to the lowering of the kcat of GlgE as well as a loss of stability 42 °C. The reported rescue of the phenotype by GarA could potentially involve an interaction with GlgE, but none was detected. CONCLUSIONS: We have been able to reconcile apparently contradictory observations and shed light on the basis for the phenotype of the temperature-sensitive mutation. GENERAL SIGNIFICANCE: This study highlights how the lowering of flux through the GlgE pathway can slow the growth mycobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/metabolismo , Fosfatos Açúcares/metabolismo , Proteínas de Bactérias/genética , Estabilidade Enzimática , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicogênio/metabolismo , Humanos , Modelos Moleculares , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mutação Puntual , Temperatura
15.
Mitochondrion ; 57: 241-256, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33279599

RESUMO

Mycobacterium tuberculosis (Mtb) employs diverse strategies to survive inside the host macrophages. In this study, we have identified a conserved hypothetical protein of Mtb; Rv0674, which is present in the mitochondria of the host cell. The genetic knock-out of rv0674 (Mtb-KO) showed increased growth of Mtb. The intracellular infection with recombinant Mycobacterium smegmatis (MSMEG) expressing Rv0674 (MS_Rv0674), established that the protein is involved in promoting the apoptotic cell death of the macrophage. To investigate the mechanism incurred in mitochondria, we observed that the protein physically interacts with the control region (D-loop) of the mitochondrial DNA (LSP and HSP promoters of the loop) of the macrophages and facilitates the increased expression of mRNA in all the complexes of mitochondrial encoded OXPHOS subunits. The changes in OXPHOS levels corroborated with the ATP synthesis, mitochondrial membrane potential and superoxide production. The infection with MS_Rv0674 confirmed the role of this protein in effecting the intracellular infection. The fluorescent and confocal microscopy confirmed that the protein is localized in the mitochondria of infected macrophages and in the cells of BAL of TB patients. Together these findings indicate towards the novel function of the protein which is unlike to the earlier established mechanisms of mycobacterial physiology.


Assuntos
Proteínas de Bactérias/genética , DNA Mitocondrial/metabolismo , Macrófagos/microbiologia , Mitocôndrias/metabolismo , Mycobacterium tuberculosis/patogenicidade , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , DNA Mitocondrial/química , Técnicas de Inativação de Genes , Macrófagos/metabolismo , Camundongos , Microscopia Confocal , Modelos Moleculares , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Conformação de Ácido Nucleico , Fosforilação Oxidativa , Transporte Proteico
16.
mSphere ; 5(6)2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148829

RESUMO

The mycobacterial cell envelope has a diderm structure, composed of an outer mycomembrane, an arabinogalactan-peptidoglycan cell wall, a periplasm, and an inner membrane. Lipomannan (LM) and lipoarabinomannan (LAM) are structural and immunomodulatory components of this cell envelope. LM/LAM biosynthesis involves a number of mannosyltransferases and acyltransferases, and MptA is an α1,6-mannosyltransferase involved in the final extension of the mannan chain. Recently, we reported the periplasmic protein LmeA being involved in the maturation of the mannan backbone in Mycobacterium smegmatis Here, we examined the role of LmeA under stress conditions. We found that lmeA transcription was upregulated under two stress conditions: stationary growth phase and nutrient starvation. Under both conditions, LAM was decreased, but LM was relatively stable, suggesting that maintaining the cellular level of LM under stress is important. Surprisingly, the protein levels of MptA were decreased in an lmeA deletion (ΔlmeA) mutant under both stress conditions. The transcript levels of mptA in the ΔlmeA mutant were similar to or even higher than those in the wild type, indicating that the decrease of MptA protein was a posttranscriptional event. The ΔlmeA mutant was unable to maintain the cellular level of LM under stress, consistent with the decrease in MptA. Even during active growth, overexpression of LmeA led the cells to produce more LM and become more resistant to several antibiotics. Altogether, our study reveals the roles of LmeA in the homeostasis of the MptA mannosyltransferase, particularly under stress conditions, ensuring the stable expression of LM and the maintenance of cell envelope integrity.IMPORTANCE Mycobacteria differentially regulate the cellular amounts of lipoglycans in response to environmental changes, but the molecular mechanisms of this regulation remain unknown. Here, we demonstrate that cellular lipoarabinomannan (LAM) levels rapidly decline under two stress conditions, stationary growth phase and nutrient starvation, while the levels of another related lipoglycan, lipomannan (LM), stay relatively constant. The persistence of LM under stress correlated with the maintenance of two key mannosyltransferases, MptA and MptC, in the LM biosynthetic pathway. We further showed that the stress exposures lead to the upregulation of lmeA gene expression and that the periplasmic protein LmeA plays a key role in maintaining the enzyme MptA and its product LM under stress conditions. These findings reveal new aspects of how lipoglycan biosynthesis is regulated under stress conditions in mycobacteria.


Assuntos
Proteínas de Bactérias/genética , Lipopolissacarídeos/metabolismo , Manosiltransferases/genética , Mycobacterium smegmatis/genética , Periplasma/química , Periplasma/metabolismo , Estresse Fisiológico/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Membrana Celular/fisiologia , Homeostase/genética , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/genética , Manosiltransferases/metabolismo , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Regulação para Cima
17.
Sci Rep ; 10(1): 14670, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887931

RESUMO

Double-stranded DNA tailed bacteriophages typically code for 50-200 genes, of which 15-35 are involved in virion structure and assembly, DNA packaging, lysis, and DNA metabolism. However, vast numbers of other phage genes are small, are not required for lytic growth, and are of unknown function. The 1,885 sequenced mycobacteriophages encompass over 200,000 genes in 7,300 distinct protein 'phamilies', 77% of which are of unknown function. Gene toxicity provides potential insights into function, and here we screened 193 unrelated genes encoded by 13 different mycobacteriophages for their ability to impair the growth of Mycobacterium smegmatis. We identified 45 (23%) mycobacteriophage genes that are toxic when expressed. The impacts on M. smegmatis growth range from mild to severe, but many cause irreversible loss of viability. Expression of most of the severely toxic genes confers altered cellular morphologies, including filamentation, polar bulging, curving, and, surprisingly, loss of viability of one daughter cell at division, suggesting specific impairments of mycobacterial growth. Co-immunoprecipitation and mass spectrometry show that toxicity is frequently associated with interaction with host proteins and alteration or inactivation of their function. Mycobacteriophages thus present a massive reservoir of genes for identifying mycobacterial essential functions, identifying potential drug targets and for exploring mycobacteriophage physiology.


Assuntos
Genes Virais , Micobacteriófagos/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/virologia , Divisão Celular/genética , Expressão Gênica , Regulação Viral da Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Viabilidade Microbiana/genética , Proteínas Virais/genética , Vírion/genética
18.
Mol Immunol ; 127: 47-55, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32927163

RESUMO

Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that can infect and replicate in macrophages. Peptidoglycan (PGN) is a major component of the mycobacterial cell wall and is recognized by host pattern recognition receptors (PRRs). Many bacteria modulate and evade the immune defenses of their hosts through PGN deacetylation. Rv1096 was previously characterized as a PGN N-deacetylase gene in Mtb. However, the underlying mechanism by which Rv1096 regulates host immune defenses during macrophage infection remains unclear. In the present study, we investigated the role of Rv1096 in evading host immunity using a recombinant M. smegmatis expressing exogenous Rv1096 and Rv1096-deleted Mtb strain H37Rv mutant. We found that Rv1096 promoted intracellular bacillary survival and inhibited the inflammatory response in M. smegmatis- or Mtb-infected macrophages. The inhibition of mycobacteria-induced inflammatory response in macrophages was at least partially due to NF-κB and MAPK activation downstream of TLR and NOD signaling pathways. Furthermore, we found that Rv1096 inhibitory effect on inflammatory response was associated with TLR2, TLR4 and NOD2. Finally, we demonstrated the PGN deacetylase activity of Rv1096 by Fourier transform IR and Rv1096 NODB deficient mutant. Our findings suggest that Rv1096 may deacetylate PGNs to evade PRRs recognition, thus protecting Mtb from host immune surveillance and clearance in macrophages.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Sistema de Sinalização das MAP Quinases , Viabilidade Microbiana , Mycobacterium smegmatis/citologia , Mycobacterium tuberculosis/enzimologia , NF-kappa B/metabolismo , Peptidoglicano/metabolismo , Animais , Proteínas de Bactérias/química , Citocinas/metabolismo , Feminino , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium tuberculosis/crescimento & desenvolvimento , Domínios Proteicos , Células RAW 264.7
19.
Biochimie ; 177: 87-97, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32828823

RESUMO

Emerging observations suggest that ribosomal proteins (RPs) play important extra-ribosomal roles in maintenance of cellular homeostasis. However, the mechanistic insights into these processes have not been extensively explored, especially in pathogenic bacteria. Here, we present our findings on potential extra-ribosomal functions of Mycobacterium tuberculosis (Mtb) RPs. We observed that Mtb RpsB and RpsQ are differentially localized to cell wall fraction in M. tuberculosis (H37Rv), while their M. smegmatis (Msm) homologs are primarily cytosolic. Cellular fractionation of ectopically expressed Mtb RPs in surrogate host (M. smegmatis) also shows their association with cell membrane/cell wall without any gross changes in cell morphology. M. smegmatis expressing Mtb RpsB exhibited altered redox homeostasis, decreased drug-induced ROS, reduced cell wall permeability and increased tolerance to various proteotoxic stress (oxidative stress, SDS and starvation). Mtb RpsB expression was also associated with increased resistance specifically towards Isoniazid, Ethionamide and Streptomycin. The enhanced drug tolerance was specific to Mtb RpsB and not observed upon ectopic expression of M. smegmatis homolog (Msm RpsB). Interestingly, C-terminus deletion in Mtb RpsB affected its localization and reversed the stress-resilient phenotypes. We also observed that M. tuberculosis (H37Rv) with upregulated RpsB levels had higher intracellular survival in macrophage. All these observations hint towards existence of moonlighting roles of Mtb RpsB in imparting stress resilience to mycobacteria. This work open avenues for further exploration of alternative pathways associated with fitness and drug tolerance in mycobacteria.


Assuntos
Proteínas de Bactérias/fisiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Ribossômicas/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Membrana Celular/metabolismo , Parede Celular/metabolismo , Citosol/metabolismo , Tolerância a Medicamentos/genética , Humanos , Lipídeos/análise , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas Mutantes/química , Proteínas Mutantes/fisiologia , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Oxirredução , Estresse Oxidativo/genética , Permeabilidade , Espécies Reativas de Oxigênio/metabolismo , Proteínas Ribossômicas/química , Ribossomos/química , Células THP-1
20.
Future Microbiol ; 15: 1033-1044, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32811177

RESUMO

Aim:Mycobacterium tuberculosis in vitro biofilm is associated with the virulence and persistence capability. Our aim is to delineate factors involved in biofilms development. Materials & methods: We performed transposon mutants screen and found that mutation of MSMEG_3641, a homolog of M. tuberculosis Rv1836c, can change M. smegmatis colony morphology and biofilm. Results: MSMEG_3641 contains a vWA domain that is highly conserved among Mycobacteria. The phenotypes of MSMEG_3641 mutants include disrupted biofilm, weakened migration ability and changed colony morphology. All phenotypes might be contributed to the enhanced cell wall permeability and declined cell aggregation ability. Conclusion: To our knowledge, this is the first report concerning the mycobacteria Von Willebrand factor domain function, especially in colony morphology and biofilm development.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Humanos , Macrófagos/microbiologia , Viabilidade Microbiana , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Domínios Proteicos , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...